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Abstract—Network analysis using graph abstractions is a
powerful tool for studying complex systems. While there are
multiple libraries for both graph operations in general and
network analysis algorithms in particular, there is no components
based standardization of both of these key set of operations.
We propose a framework that abstracts the data stuctures,
architecture, programming models for the graph algorithms
underneath a very simple component based interface. We also
build on these graph abstractions to provide a layer of abstraction
that are key for network analysis. A reference implementation of
the abstractions and its performance is also demonstrated using
a new library – ESSENS.

I. INTRODUCTION

Over the last decade, network analysis has emerged as a
powerful tool for studying complex systems of interacting
entities such as those arising in bioinformatics [1], social
sciences [2], software engineering [3] and many other diverse
disciplines. Such complex systems are typically modeled using
networks (or graphs), where the entities are represented as
vertices and their pair-wise interactions as edges. Graph algo-
rithms are used to analyze the structure of these networks, and
these structural properties provide insights to the features of
the underlying system. For example, high degree vertices often
correspond to lethal proteins in a protein-protein interaction
network [4] and groups of tightly connected vertices indicate
people with similar interests in a social network [5].

The prevalent use of network analysis has extended the use
of graph algorithms to a wide range of disciplines beyond
scientific computing. Network analysis by itself is a young
discipline where new metrics and algorithms are being devel-
oped almost on a daily basis. However, there is yet no stan-
dard framework for development of network algorithms. The
lack of a such a standard framework hampers the efficiency
and productivity of network research. Often the algorithms
are designed from scratch and the programming language
and the data structure use varies widely. This makes the
comparison between different network analysis algorithms a
difficult process, because it is difficult to ascertain whether the
efficiency was due to the algorithm design or implementation
of underlying graph algorithms/data structures. In addition, the
size of the graphs and the needs of the analysts in network
analysis vary widely which result in different approaches
to analyzing the graphs, from high peformance computing
to map-reduce based distributed computing. The choice also
affects the graph algorithm libraries an analyst could use and

the hardware available.
A first solution to this is to develop a standard and basic

set of building blocks, that would facilitate the development,
analysis and comparison of different graph-based network
analysis algorithms.

In contrast to the broad field of network analysis, graph
algorithms have been developed for decades. The various
formats to store graphs (compressed sparse graphs, adja-
cency matrices etc) have been known and the advantages
and disadvantages of using certain data structures with cer-
tain algorithms, for example an all-pairs shortest path with
adjancey matrices, are well studied. Multiple frameworks
([6], [7], [8], [9]) exist with different requirements for data
structures and interfaces optimized for their use-cases. While
there is a lot of commonalities between these frameworks,
until recently standardization of the frameworks have not been
considered [10]. Moreover, due to the varying implementation
strategies in the different frameworks, it is not easy to translate
or compare the algorithms written in one framework with the
algorithms written in another. In most cases, it is also not
very easy for the users to modify the available algorithms
unless they are extremely familiar with the framework. We
posit that a higher level abstract framework, based on the
common features, can differentiate between the algorithmic
and implementation-based innovations, as well as provide
a flexible, easy-to-use platform for algorithm development,
comparison and experimentation.

The building blocks for this framework should be abstract,
such that they can support multiple underlying implementa-
tions that use any techniques (matrix computations or map-
reduce etc), but the users of the building block need not be
exposed to it. In this paper, we propose such a abstract set of
high-level building blocks for that can serve multiple purposes,
for graph algorithm developers, network science researchers
and vendors as follows;

• For developers of new algorithms and metrics: The higher
levels of the framework will provide a set of building
blocks that will help developers conceptualize and build
their algorithms without the need to worry about lower
level implementation details, such as what data structure
or what parallel paradigm should be used.

• For developers focusing on performance: The higher
level building block will be able to support and switch
between multiple types of implementation, so the effect
of different data structures and other implementation



strategies can be compared.
• For vendors or system architects: The framework can help

highlight the set of building blocks most frequently used
by the community, and vendors can focus on optimizing
those for improved performance.

• For network analysts/ students: Researchers who are not
primarily trained as computation scientists and students
who are new to the field can leverage the higher level
blocks to understand the analysis algorithms and make
changes according to their problem requirements.

The remainder of this paper is organized as follows; In
Section II we provide background on some of the recent work
on network analysis software. In Section III we describe the
key building blocks. In Section IV, we give a brief outline
of an initial software implementation using these blocks and
provide some runtime results. We conclude in Section V with
a discussion of the key points and future potential of this work.

II. BACKGROUND

We posit that one can write graph algorithms for both
traditional and “big-data” applications on top of a basic
set of primitives or building blocks, irrespective of whether
the underlying implementation uses linear algebra primitives
and matrix operations (like combinatorial BLAS [9]) or map
reduce or thread libraries. In order to achieve this the building
blocks themselves should be agnostic on the underlying archi-
tecture (XMT, Xeon Phi, GPU), underlying model for graph
computations (linear algebra primitives, Map-reduce etc) and
programming languages (templated C++, Python, R, Fortran).

Over the recent years many network analysis packages
have been developed. These include general purpose packages
packages such as Cytoscape [11], JUNG [12], Gephi [13] and
igraph [14], as well as those focused on specific applications
such as EPiSimS [15] (epidemics), Organizational Risk Ana-
lyzer [16] (geospatial analysis) and Network WorkBench [17]
(scientific collaborations).

As the target networks are extremely large, network analy-
sis software has also been implemented in the parallel do-
main. The distributed memory based Parallel Boost Graph
Library [18], although more a graph algorithm package,
includes most of the relevant network analysis methods.
Knowledge Discovery Toolkit [19], also distributed memory
based, implements the algorithms as linear algebra functions.
SNAP [20] and NetworKit [21] focus on shared memory
based implementations. Pregel [22] proposes a vertex-based
approach to analyzing large graphs. GraphLab [23] is based
on the MapReduce framework.

There are fewer projects for dynamic network analysis.
GraphStreams [24] is a sequential Java based package that
allows quick updates of to networks and can dynamically
update the graph connectivity. GraphCT [25], designed for
massively multithreaded architectures, contains functions for
dynamically updating the network structure, connectivity and
clustering coefficients.

All these packages provide efficient network analysis algo-
rithms and are being widely used by their respective communi-

ties. However, despite the common functions, the underlying
framework and implementation differs from one package to
another. This makes it difficult to share, modify or compare
algorithms across different competing packages.

III. THE KEY BUILDING BLOCKS:

To design the key building blocks we look at the fundamen-
tal definition of graphs. Graphs are defined by two sets (i) a
set of elements (vertices with their properties) and (ii) a set of
relations between these elements (edges and their properties).
Graph algorithms, in general, concern finding other relations
based on this initial set. Building on this set-based view, we
propose that the following blocks would suffice for all graph
algorithms.

• Graphs: Set of vertices (with or without properties); Set
of edges (with or without properties).

• Set operations: Set/Sequence operations on lists of ver-
tices or edges. The set of operations are; Intersection,
Difference , Union (or Merge), Subset (identify subsets
that follow certain property; equivalent to filtering), Sort
(including Priority Queue operations) and Find

• Traversals: Traversals are equivalent to finding transitive
chains. We start from a set of elements (generally the set
is a singleton or the vertex marked as 0 and based on
certain relations, continue to find transitive chains until a
stopping condition (such as based on number of elements
visited, or the length of the chain). Different traversals are
distinguished only by which relationship (here we term
it priority) drives the chain formation.

• Output: A set of elements and properties; A set of
relations (edges); A scalar value.

Given below is a generalized form of the traversal function

Algorithm 1 General Traversal Function
Input Graph G(V,E); Properties of vertices V P ; Priority
Set of Boolean Conditions PF Set of Visited Elements W .
Initialized to empty set. Output Set of Edges H

Initialize Values of V P
Select Set of Start Node(s); S
while Stopping Condition not fulfilled do

for all v 2 S, u 62 W and (v, u) 2 E do
if (v, u) fulfills conditions in PF then

H = H [ (v, u)
Value of V P [u] updated

end if
end for
W = W [ S
Select vertices that can be part of S based on V P .

end while

By using such template-based approach we are no longer
confined to the traversal functions provided in a software, but
by changing the values and criteria associated with the priority,



PF and vertex properties, V P , we can design different
traversal based algorithms, including the commonly known
ones in graph theory. In Breadth First Search (BFS) the priority
is to find a chain of the shortest length. Depth First Search the
priority is the longest chain. This argument can be extended
to weighted graphs and extracting non-tree subgraphs as well.
We consider an edge weight to be the property of a relation.
Minimum Spanning Tree is finding transitive chains such that
the priority is given to the relation with the least weight. For
extracting chordal graphs using the Dearing algorithm [26], the
priority is to maintain the chordal properties. Given below is an
example of how the Dearing algorithm can be written within
the template of the traversal function given in Algorithm 1.

Algorithm 2 Extracting Maximal Chordal Graphs
Input Graph G(V,E); Properties of vertices V P ; Priority
The added edges should maintain chordal graph properties
Set of Visited Elements W . Initialized to empty set. Output
Set of Edges H

for all v 2 V do
Set V P (v) = ;.

end for
Select Set of Start Nodes; Here S = {v0}
while All nodes not visited; |W | 6= |V | do

for all u 62 W and (v0, u) 2 E do
if V P (u) ✓ V P (v) then (Criteria for maintaining

chordal subgraph)
H = H [ (v, u)
Value of V P (u) updated; V P (u) = V P (u)[v0

end if
end for
W = W [ S
Select next vertex v0; such that |V P (v0)| � |V P (v)|

for all v 62 W
end while

We can build on these basic functions to design more
complicated analysis methods, where graph traversal is part
of the algorithm. We show how an elegant strongly connected
component algorithm, originally described by Pinar et al. [27],
can be implemented using a generalized traversal function
and simple set operations. The strongly connected compo-
nent algorithm is itself given in Algorithm 3. It uses two
traversals on each direction of a directed graph and a few
set operations. In practice, Algorithm 3 as listed here has
implementations in MPI [28], shared memory [29] and map-
reduce frameworks [30]. One could implement this in matrix-
based primitives as well.

IV. ESSENS: A REFERENCE IMPLEMENTATION

We have implemented some of the network algorithms
using these building blocks into a software package ESSENS
(Extensible, Scalable Software for Evolving NetworkS). We
classified the analysis algorithms into three levels based on

Algorithm 3 Strongly Connected Component Algorithm
1: procedure SCC(V )
2: if V = ? then
3: return ?
4: end if
5: Select a pivot u 2 V
6: D  BFS Traversal(G(V, E(V )), u)
7: P  BFS Traversal(G(V, E0(V )), u)
8: R (V \ (P [D)
9: S  (P \D)

10: S  S [ SCC(D \ S)
11: S  S [ SCC(P \ S)
12: S  S [ SCC(R)
13: return S
14: end procedure

area of operations. Since most combinatorial methods can be
implemented as a combination (consecutive or nested) of these
levels, this classification will help us to design and analyze our
methods over a generalized framework. The three levels are
as follows;

• Level 1 Vertex Based Computations. These computations
involve only a vertex and its distance-k neighbors, where
k is small. These operations are generally the least
expensive ones in the analysis process. Examples include
computing degree and clustering coefficient.

• Level 2 Subgraph Based Computations . These computa-
tions involve a specified set of vertices. One example is
combining certain groups of vertices in a supernode.

• Level 3 Graph Based Computations. These computations
involve traversing the entire network. Examples include
verifying connectivity, finding articulation points, com-
puting betweenness centrality.

ESSENS, is implemented in STL/C++, is currently sequen-
tial and the functions are designed for undirected networks.
The framework has a bottom-up design (shown in Figure 1),
the lower rows containing functions that are used in the higher
rows. We envision that high performing implementations will
choose to implement Level 3 operations by themselves without
using the underlying Level 1 and Level 2 blocks for perfor-
mance reasons.

The top level contains abstractions for network-based algo-
rithms, including (i) a Network Transform component trans-
forms the original network, such as in sampling or reorder-
ing, (ii) a Computing Metrics component that computes the
network and vertex properties and (iii) a Rank and Compare
component that ranks these properties and compares networks.
The analysis methods can extend across multiple groups. For
example, functions for the minimum weight spanning tree
requires both Network Transform (spanning tree) and Rank
and Compare (edge weights).

The second level contains the graph abstractions that are
required by top level algorithms including (i) Traversal of
Networks, (ii) Subgraph Operations for combining or dividing
two networks or to selecting specified parts of the network and
(iii) Matrix Operations, such as those required for spectral
methods. The third level includes vertex-level functions for



adding, deleting and selecting vertices and edges and auxiliary
algorithms for sorting (selecting edge with minimum weight)
and set operations (finding common neighbors). These levels
are built on top of an implementation framework, currently
called Network Bundle. Users can implement networks as per
their favorite data structure (currently the networks are defined
as Adjacency List and CSR formats).

Although not currently in place, ESSENS will also provide
options to link with other external packages on database
storage and parallel programming. ESSENS will also be
designed to be extensible and include more capabilities like
visualization after the analysis, adding new algorithms in the
graph layers and supporting other programming models and
the data structures.

There are two important features of ESSENS that contribute
to making it truly extensible and flexible and also distinguish it
from many other network analysis/ graph algorithm software.
The first feature is the separation between the data structure
and the algorithm implementation. Because of the modularity
between levels, so long as the operations associated with that
data structure is defined in Level 1, the algorithms in Level
2 and 3 need not be changed at all. Although packages like
Boost offer the options of different data structures, most of
the algorithm implementations are heavily entwined with that
particular data structure. Therefore, changing a data structure
often means rewriting the entire algorithm. ESSENS prevents
this duplication of work and thereby also allows users to
separately evaluate whether the improvement in performance
because of a clever data structure or a superior algorithm
design.

The second unique feature of ESSENS is that it does not
divide the algorithms into known network analysis categories,
such as community detection, centrality, etc, although ex-
amples of these methods are provided. Nor does ESSENS
distinguish between static and dynamic networks. Our goal is
that users can select the particular blocks required and create
their necessary algorithms. If the necessary operations are
provided then the users have the freedom to experiment with
different static and dynamic algorithm schemes. This feature
allows users to experiment with different options beyond what
is provided in the software. Suppose the user would like to
implement a BFS algorithm, but not traverse certain vertices
based on specific properties. The template in Algorithm 1 can
easily accommodate such a slight change in the algorithm. As
far as we know, no other software allows this template-based
facility of experimentation. In most cases, users have to go
through the code to figure out the appropriate place to change
the code.

A. Runtime Comparisons of ESSENS
ESSENS provides users the flexibility to use either the

generalized building blocks at the higher level or customize
their algorithms using the lower level blocks. The former
improves the ease of development and productivity while the
later can be used to improve the performance. As an example,
we compared these two approaches with graph algorithms

Fig. 1. Blueprint of the ESSENS Framework Showing the Levels of
Abstraction

provided in the Boost Graph Library, on a set of bench-
marks, listed in Table I, obtained from the Standford Network
Database (SNAP) [31]. The runtimes were computed only for
the analysis process, and not for graph reading, creation and
other auxiliary operations.

We first experimented with executing BFS as the high level
traversal algorithm. As can be seen from the top figure in
Figure 2, the algorithm in the Boost Graph Library was con-
siderably faster than the one in ESSENS. This is because the
implementation is ESSENS is generalized to call any traversal
function so long as the appropriate priority is specified. This
generalization requires multiple function calls in Levels 2 and
3, which adds to the runtime. However, this also provides the
opportunity for the users to mix-and-match traversal operations
(for example run BFS for the first half of the vertices and
then DFS for the next half), by just changing the appropriate
priority function. Other packages do not allow such easy
mixing of operations.

Nevertheless, for a user only requiring BFS, the generalized
traversal function is expensive. Then the user can invoke
lower level functions such as finding the neighbors, and
selecting them for the next wave of traversal as used in the
traditional BFS computations. We implemented the Brandes
algorithm [32] for computing betweenness centrality using
the Level 1 operations only. In this case, we do not use
any generalized functions and the runtime of ESSENS is
considerably lower than that of the algorithm provided by
Boost Graph Library. Of course, users familiar with a certain
software can improve the runtime by tuning the implementa-
tions. However our goal in ESSENS is to differentiate between
the high level and low level algorithms, such that new users
can easily identify the right blocks to model their algorithms
and experienced users can write their algorithms using low
level functions to improve performance.



TABLE I
Test Suite of Networks

Name Vertices Edges Description
Caida 16301 65910 Autonomous systems network

WikiVote 58228 214078 Wikipedia Voting Network
Brightkite 58228 428156 Social network
CondMat 23133 186956 Collaboration network
Gnutella 62586 295784 Peer-to-peer file sharing network

Fig. 2. Comparison of Runtime of ESSENS with Boost Graph Library. The
times are given in Seconds. Top: Runtimes for BFS. Bottom: Runtimes for
Betweenness Centrality using the Brandes Method.

V. CONCLUSION

We presented a general, extensible, component based frame-
work for graph abstractions and extended it for graph-based
network analysis. Our framework is independent of data
structures, programming models, architectures. This compo-
nent based interface will allow network science researchers,
graph algorithm developers to collaborate efficiently. We also
presented a reference implementation of this framework as
a software library, ESSENS, and demonstrated a high level
algorithm that improves productivity and a low-level high
performance implementation of a network analysis algorithm.

Our hope is for this paper and framework to simulate dis-
cussion between the graph algorithms and network science
communities in order arrive at a standard that benefits both
the communities.
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[3] L. Šubelj and M. Bajec, “Software systems through complex networks
science: Review, analysis and applications,” in Proceedings of the First
International Workshop on Software Mining, ser. SoftwareMining ’12.
New York, NY, USA: ACM, 2012, pp. 9–16. [Online]. Available:
http://doi.acm.org/10.1145/2384416.2384418

[4] H. Jeong, S. P. Mason, A. L. Barabasi, and Z. N. Oltvai, “Lethality and
centrality in protein networks,” Nature, vol. 411, no. 6833, pp. 41–42,
May 2001. [Online]. Available: http://dx.doi.org/10.1038/35075138

[5] K. Wakita and T. Tsurumi, “Finding community structure in mega-scale
social networks: [extended abstract],” in Proceedings of the 16th
International Conference on World Wide Web, ser. WWW ’07. New
York, NY, USA: ACM, 2007, pp. 1275–1276. [Online]. Available:
http://doi.acm.org/10.1145/1242572.1242805

[6] J. G. Siek, L.-Q. Lee, and A. Lumsdaine, The Boost Graph Library:
User Guide and Reference Manual. Addison-Wesley, 2002. [Online].
Available: http://www.awprofessional.com/title/0201729148

[7] E. G. Boman, K. D. Devine, V. J. Leung, S. Rajamanickam, L. A. Riesen,
M. Deveci, and U. Catalyurek, “Zoltan2: Next-generation combinatorial
toolkit.” Sandia National Laboratories, Tech. Rep., 2012.

[8] B. W. Barrett, J. W. Berry, R. C. Murphy, and K. B. Wheeler,
“Implementing a portable multi-threaded graph library: The mtgl on
qthreads,” in Parallel & Distributed Processing, 2009. IPDPS 2009.
IEEE International Symposium on. IEEE, 2009, pp. 1–8.
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